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Abstract 

In this work we investigated sensemaking activities on different immersive platforms. We observed user behaviours during a                 
classification task on a very large wall-display system (experiment I) and in a modern Virtual Reality headset (experiment                  
II). In experiment II, we also evaluated a condition with a VR headset with an extended field of view, through a sparse                      
peripheral display. We evaluated the results across the two studies by analyzing quantitative and qualitative data, such as                  
task completion time, number of classifications, followed strategies, and shape of clusters. The results showed differences in                 
user behaviours between the different immersive platforms, i.e., the very large display wall and the VR headset. Even though                   
quantitative data showed no significant differences, qualitatively, users used additional strategies on the wall-display, which               
hints at a deeper level of sensemaking compared to a VR Headset. The qualitative and quantitative results of the comparison                    
between VR Headsets do not indicate that users perform differently with a VR Headset with an extended field of view. 
 
 

Keywords  

Visual analytics, large high-resolution displays, sparse      
peripheral displays, virtual reality, head-mounted     
displays, spatialization, clustering, visualization,    
sensemaking, immersive analytics  

1. Introduction 

1.1. Visual Analytics 

Visual analytics (VA) is a science-based activity       
supporting sensemaking for large, complex datasets      
through interactive visual data exploration [1]. In VA,        
users reason and make sense of the data through         
interaction with visualizations of the data. In the past,         
this concept gave rise to products such as Tableau,         
Microsoft Power BI, QlikView, and others. 
In most VA applications, users interact indirectly with        
data through widgets, such as sliders and menus, which         
control the visualization through modifying the      
underlying model parameters. In contrast, semantic      
interaction enables analysts to spatially interact with their        
visualizations directly within the visual metaphor, using       
interactions that derive from their analytic process [2].        
Further, semantic interaction supports sensemaking     
better than indirect interaction [3]. In a spatial        
workspace, users can directly arrange documents      
spatially into clusters to convey similarity or       
relationships in the data [4]. Spatial workspaces also        
allow users to establish implicit relationships in large        
datasets [5]. 

The space limitations of normal desktop displays lead to         
a need to remove/reduce/hide (at least temporarily)       
existing visualizations to make room for new ones,        
requiring an additional cognitive effort from the users to         
remember the now invisible information. By radically       
increasing display size, this dynamic could change       
substantially and allow users to visually access more        
information at once. Comparisons can then be made        
visually and directly rather than relying on memory and         
imperfect mental models – which supports the usability        
principle of recognition over recall. With desktop       
monitors, we often face a tradeoff between the level of          
detail and the number of different objects that can be          
displayed. New forms of displays, such as large display         
surfaces or virtual reality environments, can thus       
potentially improve the efficiency of VA activities. On a         
large display, a flick of the eye or turn of the head is all              
that is required to consult a different data source [6].          
Previous work has found that large, high-resolution       
displays (LHRDs) improve productivity over traditional      
desktop monitors [6–8]. We can expect this to hold for          
VA applications on large displays as well. The        
exploration of different user interface technologies for       
data visualization applications has never been a core        
topic in information visualization [9]. 
The combination of Virtual Reality (VR) technologies,       
3D user interfaces and VA systems is a new approach to           
analyzing large or complex datasets. This research field        
is nowadays described by the term Immersive Analytics        
[9,10]. Working with VR systems in a professional        
environment and using these for data visualization or as         
an immersive analytical workspace provides “an easy       
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and natural path to collaborative data visualization and        
exploration” [11]] [p. 609] and shows possibilities to        
“maximize intrinsic human pattern recognition”.     
Previous research has already shown that VR can support         
insight discovery in (primarily) spatial application      
domains and in helping to more effectively investigate        
brain tumors [12], MRI results [13], shape perception        
[14], underground cave structure analysis [15], geo-       
scientific [16,17], or paleontology questions [18]. Thus,       
we expect LHRDs and VR systems to improve VA         
activities. The work reported here aims to compare these         
two approaches through user studies. 

1.2. Sensemaking in Immersive Environments 

How analysts make sense of a given data set is a crucial            
part of their work. The way humans understand and         
process information in VA activities is well described by         
the Sensemaking Loop [19]. This sensemaking loop       
breaks the process down into several stages, as illustrated         
in figure 1. For Immersive Analytics, i.e., doing VA         
activities in immersive environments, previous research      
shows how each stage of the sensemaking loop might be          
improved or impaired by the capabilities or limitations of         
the system [20]. 

 
Figure 1: The sensemaking loop [19]. 
 
As seen in figure 1, the sensemaking loop involves a          
series of iterative steps for creating and evaluating a         
model for the data. Creating a model (bottom-up)        
involves finding information, extracting meaning,     
schematizing and building a case, and subsequently       
communicating that information. On the other hand,       
evaluating the model (top-down) involves re-evaluation,      
finding supporting evidence, finding relations in the       
information, or even finding basic information itself [19]. 
An integral part of the sensemaking process is foraging         
for information. To support such foraging, we could use         
represent data sources similarly to icons in an immersive         
environment, using either VR headsets or LHRDs.       
However in immersive environments, we can equip these        
representations with additional semantic meaning - such       
that the model of an engine might serve as a gateway for            
information about emissions, maintenance, power output,      

or other factors. One limitation of this approach is that          
there is much content that is not easily represented by          
icons, such as the cleaning budget for a department that          
sells cleaning products. 
The second part of the sensemaking process is about         
synthesizing information, formulating hypotheses, and     
arranging supporting and contradictory evidence. Display      
space can play an important role in this process and assist           
in task completion, e.g., through the use of larger         
amounts of space for organization [6]. Further, the larger         
space offered by immersive systems provides a physical        
instantiation of the mnemonic device ‘memory palace’.       
Thus, different parts of a complex model could be         
compartmentalized to different (virtual) spatial locations.      
Analysts can then use the space not only for their          
collected information but also to organize and structure        
their analytical workflow and thought processes [20]. In        
this paper we focus on this aspect of sensemaking. 
Some VA tasks require specific types of interaction        
methods, e.g., the method to select data during foraging         
might be different from that to express a hypothesis.         
Good user interfaces for immersive environments are       
subject to specific guidelines and concepts. Elmqvist’s       
fluid interaction concept distinguishes different     
interaction types for selection, filter, sort, navigation,       
reconfiguration and labeling and annotating in VA tasks        
[21]. For example, techniques such as mouse interaction        
are not appropriate in immersive environments where the        
user is standing and not sitting in front of a display.           
Gestural interaction, e.g., pointing to and circling one or         
more elements, could be used instead. For such        
interaction, designing comfortable gestures is necessary      
to minimize the strain on the user. 
As discussed above, there is great potential for        
integrating the VA process into immersive environments.       
Thus, we need to examine the specific components of the          
sensemaking process that can be enhanced by immersive        
technologies and use the advantages of such technologies        
to support the VA sensemaking process. Here we focus         
on the ability of the user to arrange the visualizations of           
data on a large display canvas. 
Grouping the information and generating clusters of       
related data is a part of sense-making in analytical tasks,          
which helps in the search for a way to encode data in a             
visual representation that helps to answer task-specific       
questions [22]. It takes place in the early, preparation         
stages of VA processes and its effectiveness can affect         
the efficiency of all following stages. 
A core inspiration for this study was Endert et al.’s work           
[23], which presented the concept of semantic interaction        
that seeks to enable analysts to spatially interact within         
their analytical workspace. Following their work, we also        
believe it is important to observe how users organize         
their information, unaided by any algorithm, as this        
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reveals insights about the human ability to understand        
large amounts of information through an interactive       
system. Thus, we do not use algorithmic clustering.  

1.3. Large Display Systems 

Large display systems are both qualitatively and       
quantitatively different from traditional displays. Reda et       
al. presented the results of a small-scale study to         
understand how display size and resolution affect insight.        
Although their results verify the generally accepted       
benefits of large displays, they also provide mixed results         
for extant work and propose explanations by considering        
the cognitive and interaction costs associated with visual        
exploration [24]. Other studies suggest that users       
working with large displays became less reliant on        
wayfinding aids in acquiring spatial knowledge. For       
example, Ni et al.’s experimental findings demonstrated       
the advantages of increased size and resolution [25]. As a          
general guideline, a LHRD was the preferred choice for         
IRVE applications, since it facilitates both spatial       
navigation and information gathering. 
Our research uses multiple immersive display systems.       
One of them is a LHRD system called V4-SPACE. We          
used it to investigate how LHRDs can support VA tasks          
for a single user (figure 2). During this experiment we          
observed how physical size, resolution, and content       
spatialization on the workspace affect user performance       
on LHRD in VA tasks. A detailed description of         
V4-SPACE is given in the next chapter. 

 
Figure 2: A user operating V4-SPACE 
 

1.4. Head-Mounted Displays and Sparse    
Peripheral Displays 

Extending VA system to be used within Virtual Reality         
(VR) systems poses challenges and opportunities. On the        
one hand, VR opens up new possibilities for data         
visualization, as virtual environments fully surround the       
user and the interface of the Human Machine Interface         
can be perceived to be more natural and intuitive. Thus,          
content can be placed and worked on all around the user.           
However, immersive VR technologies suffer from some       
restrictions, such as limited resolution, limited      
field-of-view, motion sickness, issues with interaction      
and gesture recognition, and with positioning objects in        
3D space [9]. Even though current research in Immersive         
Analytics focuses primarily on low-level challenges [9],       
the above-mentioned obstacles still affect our research. 

To address some of the above-mentioned issues of VR         
systems, we use a Sparse Peripheral Display HMD for         
our immersive VA study. The binocular field-of-view       
(FOV) of a standard VR HMD system is today about 84           
degrees horizontal (110 degrees diagonal). By using a        
Sparse Peripheral Display (SPD), we can increase the        
field-of-view much by showing (low-resolution) content      
in the periphery of an HMD [26]. Increasing the FOV          
increases the spatial awareness of the user and might         
potentially even reduce simulator sickness. 
A number of approaches and different systems to        
broaden the FOV through complex optical methods have        
been proposed. Fresnel lenses, such as the ones used in          
the StarVR and Wearality Sky, are challenging to        
manufacture and introduce optical distortions which are       
hard to mitigate [26]. Mirror based approaches [27]        
significantly increase the weight of their HMD devices. 
In our study, we rely on previous research on SPDs          
[26][28]. Xiao & Benko [26] presented a SPD that uses a           
lightweight, low-resolution and inexpensively produced     
array of LEDs, designed to surround the central        
high-resolution display of a Oculus Rift DK2 HMD.        
Their SPD expands the available FOV up to 190°         
horizontal. This SPD nearly fills the whole human FOV,         
which can span up to 210° giving the user a better           
perception of the virtual content that surrounds them        
(figure 3). Hashemian et al. [28] evaluated an improved         
SPD version in a HTC Vive setup, extending the Vives’          
FOV to 180° horizontally. They evaluated the       
performance of the SPD HMD in a spatial navigation         
study that used a previously presented navigational       
search paradigm [29,30]. Their results show that SPDs        
can provide a more natural experience of human spatial         
locomotion in virtual environments. 
 

 
Figure 3: HTC Vive with a Sparse Peripheral Display extending          
the FOV to 180°. 

2. A comparison of sense making     
behaviours in LHRD and HMDs 

Based on knowledge about SPDs [26,28], large display        
systems [6,8] and immersive environments [9–11],      
combined with results from research about sensemaking       
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[19,22] and productivity in VA [6,8,11,31,32], we       
performed two experiments in immersive analytics using       
different platforms. In Experiment I, we used a LHRD         
System and in Experiment II a SPD HMD with or          
without the SPD switched on. 
To investigate sensemaking in each experiment and to        
compare how well both platforms used, we formulated        
the following hypotheses. We use the notation H1-II to         
signify the first hypothesis for the second experiment: 
H1-I: Users spatialize their content through  

clustering information and exploit the 
advantages of a large display space. 

H1-II: Users perform differently in a SPD HMD 
relative to an off-the-shelf VR HMD, 
resulting  in different qualitative and 
quantitative outcomes. 

H2-II: Users prefer a SPD over a standard VR HMD 
due to the larger FOV and thus a better 
sense of orientation in the space. 

H3-II: SUS scores will show a higher sense of 
presence in the immersive environment with 
an SPD. 

H1-C: Users perform better with a LHRD relative 
to a VR HMD, resulting in different qualitative 
and quantitative outcomes.  

2.1. Global design decisions 

To enable us to compare the results of both experiments,          
we aimed to maintain consistent design decisions across        
both experiments. Thus, we used (almost) identical       
experimental designs, using the same tasks for each        
experiment. We also tried to match the technological        
aspects of the HMD and the V4-Space as well as          
possible by setting up the curvature and size of the          
virtual screen displayed in the HMD to be similar to the           
one of the physical V4-Space LHRD.  

2.2. Task 

In both experiments users were given a workspace        
populated with charts. Users could create new charts on         
the workspace, delete existing ones, resize as needed, and         
move them around freely. In both experiments, the        
participants’ objective was to solve a VA task in an          
immersive environment. Participants were asked to      
complete two tasks subsequently.  
In the first task, participants were asked to arrange the          
scatterplots into groups based on similarity. They were        
told that they could consider any similarity criterion and         
group according to their own perception of the data. We          
enforced a minimum of at least five (5) groups, but they           
could create more. Participants were required to group all         
the charts. After completion of the grouping, they were         
asked to explain their motivation behind the way they         

grouped the charts. The responses were recorded about        
all aspects they considered. 
In the second task, participants highlighted each       
dimension in turn through clicking on the data dimension         
in the left panel. When a data dimension on the data           
panel is clicked, each chart using this dimension in the          
visualization panel is highlighted. This feature let users        
see if their grouping criteria had a “common dimension”,         
i.e. charts having the same dimension in one of their axes           
are grouped. The task was to observe any patterns that          
might become apparent.  
We observed in pilots that the classification behaviour of         
novice users was sometimes purely based on the chart         
type, which has no relation with the visualized data. To          
ensure that classification decisions were not affected by        
chart type, only a single data type (numerical) and a          
single chart type (scatterplots) were used in the studies.         
The dataset we used for experiment I and experiment II          
has been the same US Census dataset. However, to         
randomize the data over the conditions in the VR tasks,          
we used an additional second dataset in experiment II. 
We also observed in pilots that VR controllers/wands did         
not provide sufficient performance. Thus, we decided to        
use the same input device, a high-resolution gaming        
mouse, in both experiments. 

2.3. Experimental Design 

We used a convergent parallel mixed methods design for         
both experiments to collect both quantitative and       
qualitative data. We acquired quantitative data by       
measuring the number of groups created in the clustering.         
Additionally, to gain qualitative data and to get insights         
into the participants’ thoughts, we asked the participants        
to think aloud while they were performing the tasks. 
In experiment I, each participant performed primarily the        
first task. We collected qualitative data to gain an insight          
into the participants behavior and of the potential        
advantages of a large display space.  
In the second experiment, each participant was exposed        
to two conditions with the VR HMD: one with the SPD           
display on and another with the SPD switched off. This          
resulted in a within-subject design. The task described        
above was the same for each condition. Accounting for         
the repeated exposure to the task in the second condition          
and to consider its implicit learning, we randomized the         
order of the SPD/Non-SPD condition for each participant        
to minimize the bias and ensure counterbalancing.       
Further, we used two different datasets which we        
randomized over the SPD/Non-SPD conditions.     
Additional quantitative data for Experiment II were       
acquired by measuring the completion time of the first         
task. 
Qualitative and quantitative data of both experiments       
were later used to investigate differences between the        
platforms. To avoid learning effects across both       
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experiments, we used a between-subjects design to       
compare between the LHRD and SPD/Non-SPD HMD. 
 

2.3.1. Data Collected 

As part of the instruction phase for each experiment,         
participants filled in a questionnaire regarding their       
background and their knowledge of VA, VR and        
immersive environments like LHRD. Participants were      
asked to use the think-aloud protocol while performing        
the task and to share their thoughts about their clustering          
choices. Participants used the same protocol to share        
their observations about the highlighted dimensions in       
relation to their own grouping. 
During the tasks, users’ answers were recorded via        
free-form text boxes and were stored in a survey system.          
Users’ clustering activity was tracked in two ways: First,         
we screen-recorded their activities. Second, we recorded       
the positions and information of each chart for each final          
participant’s grouping.  
To be able to better understand the raw screen         
recordings, we watched the user carefully at each step of          
the procedure and recorded observations, e.g., through       
jotting down signs of frustration at specific points in         
time, which further informs the analysis of the results. 
At the end of the study, we performed an audio-recorded          
post-study interview with each participant, taking      
typically less than 5 minutes. This interview was        
semi-structured. We asked participants a list of questions        
regarding the tasks they completed, the software tool, the         
system, what they liked, what was challenging and/or        
confusing, and whether they had any further feedback. 

2.4. Apparatus 

The most notable components of the apparatus for this         
study are a LHRD for the first experiment and a HMD           
with/without SPD for the second experiment. We further        
used a VA tool called DynSpace to carry out analytical          
tasks. DynSpace runs as a web application on a Node.js          
server with MongoDB running in the backend to support         
data collection during experiments [33]. We chose a web         
application because of its ubiquitous accessibility and       
flexibility in terms of both client and server side         
technologies and to ease for future expandability on large         
display screens.  

2.4.1. V4-Space 

V4-SPACE consists of a 1x7 array of large, tiled         
displays, each a vertically oriented 85” 4K Samsung        
Smart TV. The user sits in front of a desk at the center of              
the semi-circular arrangement of the TVs, see figure 2.         
We put an additional 21” monitor for auxiliary tasks         
before the user, below the line of sight to the large           
display. The main display has 15120 x 3840 pixels,         

which makes V4-SPACE a 58-megapixel system with 52        
PPI pixel density. While the aspect ratio of a single          
display is 9:16, the system ratio is 63:16, about 4:1. The           
main display is 7.41 m by 1.88 m. In the 1x7 grid, there             
are no horizontal bezels and only 6 vertical ones. 
V4-SPACE is controlled by a single computer with an         
Intel i7-6700K 4GHz processor with four PCI Express        
Gen 3 slots. The displays are driven by two nVidia          
Quadro M5000 cards, which provide four 4K outputs        
each, hardware synchronized through an nVidia Quadro       
Sync card. The auxiliary desktop monitor (which was not         
used for VA activities, and solely served to display a          
questionnaire form) is connected via an nVidia Quadro        
K620 graphic card. V4-SPACE relies on the nVidia        
Mosaic driver functionality, which presents all seven       
large displays as a single display to the user. 
The system is designed for a single user who has a fixed            
position in front of the display system, about 3.3 m from           
each monitor. At this distance V4-SPACE is a        
“super-retina” display[34]. The display system is      
arranged in a circular arc (approximately 131° horizontal        
field-of-view, FOV) such that each monitor is equidistant        
to the user. This avoids information legibility issues due         
to non-uniform distances. As a limited form of physical         
navigation, the user can simply rotate their head or rotate          
a swivel chair to look at different parts of V4-SPACE. 
Interaction is through keyboard and mouse. To support        
the high resolution of V4-SPACE, we use a Razer         
DeathAdder Chroma 10000 PPI optical gaming mouse,       
which permits the user to perform pixel-accurate pointing        
on the large display surface. 

2.4.2. SPD HMD 

For the HMD we used an off-the-shelf HTC Vive VR          
headset which was extended with a custom built Sparse         
Peripheral Display (SPD) to broaden the field-of-view of        
the virtual environment (figure 3). The SPD consists of         
256 RGB LEDs placed on a 2-layer flexible printed         
circuit board. The LEDs are set in a radial array and the            
flexible PCS is folded to tightly fit around the lenses of           
the headset. The LEDs themselves are controlled by two         
LED drivers (Texas Instrument TLC5951), which      
provide 12-bit PWM color control to each color of the          
LED RGB triplet (36 bits of color per LED). Its LED           
drivers are controlled by an Cortex-M3 microcontroller       
(Cypress CY8C5288 LTI-LP090), which handles all      
communication with the computer through USB. The       
SPD update rate is set to 100Hz and the horizontal          
display FOV consists of approximately 180° (see [28] for         
a similar setup). We switched the SPD on and off for the            
two conditions investigated in this experiment.  

2.4.3. Common software platform 

The VA tool DynSpace is a browser-based VA tool         
written in JavaScript. Its user interface consists of two         
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two panels: a Data Panel on the left side showing data           
dimensions and the main visualization panel on the right.         
Users can select data dimensions in the left one and          
drag-and-drop them into charts in the main visualization        
panel for analysis. 
The visualization panel contains data charts that show        
relations between selected data dimensions. Each chart is        
contained in a rectangular sub-panel that a user can         
move, resize, add, or delete, and shows a 2D data plot.           
All plots are coordinated through brushing and linking. 
DynSpace was designed to aid analysis of complex        
datasets [34]. Initially it displays a number of charts,         
each generated automatically by picking random pairs of        
data dimensions. This set of initial charts uses about half          
of the workspace in either of the experiments. The initial          
display of charts is a simple array with no clustering.          
Enough free space is left for the user to arrange the           
spatial layout of the content as they wish, e.g., by moving           
charts and creating clusters. 
DynSpace uses a grid-based layout manager that enforces        
complete visibility of charts at all times by not allowing          
charts to partially or completely overlay one another. The         
available space is divided into invisible rows and        
columns so that the clusters always appear as an array. 

3. Experiment I 

The purpose of experiment I was to observe user         
behaviour during a classification task in a LHRD. 

3.1. Methods 

The spatialization task used a simplified version of        
DynSpace to display 2D plots visualizing relations       
among a subset of the 2016 US Census Dataset. This          
study took place on the V4-SPACE display (figure 4). 
 

 
Figure 4: The instance of DynSpace that spans the display space           
of our LHRD. Each square is a chart of a part of the data. 

3.1.1. Participants 

There were nine participants, P0 to P8, four of whom          
were male. Ages ranged from 18 to over 40. Some were           
undergraduate students participating for course credit,      
others were volunteers with at least a bachelor’s degree.         
Through pilot studies, we ensured that all users could         
read the text on the displays from the default chair          
position without problems. 

Participants were asked about their familiarity with seven        
VA terms and concepts in the pre-study survey. On         
average, they were familiar with 4.4 of those.  
Since the study did not require specific domain        
knowledge, we were able to use mostly novice users for          
this study. 5 participants out of 9 did not have any VA            
experience. One reported less than a year of experience         
and three reported 1 to 3 years of experience. Seven of           
them had never used any visualization or VA tools,         
whereas one had used D3.JS and another used R in a           
statistics course for a term.  
In a pre-study survey we asked users whether they could          
interpret data from scatter plots. They ranked their ability         
of interpreting data correctly from a scatter plot on a          
scale from 1 to 5. The results were 3x “Sometimes”, 4x           
“Mostly” and 2x “Yes, always” answers; which       
respectively stood for 3, 4 and 5 on the scale used.  

3.1.2. Procedure 

We first instructed participants that they could       
rotate/swivel the chair to see the full display, but that the           
chair had to remain in the same location until the end of            
the experiment, to retain the same distance to all displays          
in the system. Leaning back and forward was permitted,         
as desired. Next, we trained them in basic, yet frequent          
operations on V4-Space: keeping track of the cursor, how         
to find it when they lost track of it, and switching           
between the LHRD and the auxiliary monitor. Then,        
users were introduced to DynSpace along with some        
practical tips regarding the usage. We assured users that         
they could ask questions during the experiment and that         
they should communicate their thoughts around the tasks        
or whenever they experienced issues. We recorded any        
direct or indirect feedback from the users during the tasks          
through note-taking. 

3.2. Results 

Reporting the results for experiment I, we use the         
notation P3-I to signify participant three from the first         
experiment. 

3.2.1. Clustering 

Three participants created only the minimum allowed       
five groups and four clustered their plots into 6 groups.          
The other two participants created 8 and 16 groups         
respectively. 
The participants used one of the following three equally         
prevalent strategies when clustering: Similar visual      
appearance (P1-I, P2-I, P7-I), commonality in labels (P0,        
P4-I, P5-I), or common topics (P3-I, P6-I, P8-I). When         
building clusters, charts were either arranged horizontally       
or vertically (P0-I, P1-I, P4-I, P5-I), roughly circular        
(P6-I, P8-I), or in a mixed arrangement (P2-I, P3-I, P7-I).  
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For some users, there was no perceptible relation        
between different clusters in the workspace (P0-I, P1-I,        
P4-I, P5-I). For P3-I, cluster shapes were determined by         
cluster types. For the rest (P2-I, P6-I, P7-I, P8-I), the          
distance between clusters decreased as the similarity       
between clusters increased. For these participants,      
relations between clusters were reflected by cluster       
separation. For some participants, there was either no        
(P0-I, P1-I) or only a minimal (P3-I, P5-I, P8-I) distance          
between clusters. For some participants (P4-I, P6-I) the        
bezels strongly influenced the cluster arrangement. For a        
few users (P2-I, P7-I), the distance between clusters        
varied depending on the inter-cluster relations. 

3.2.2. Space Usage 

Out of nine participants, seven used the entire width         
display provided by the system. If a user runs out of free            
space, DynSpace permits vertical scrolling via the mouse        
wheel (but not horizontal scrolling). Surprisingly, P0-I       
and P1-I used only about 2/7 and 3/7 of the space,           
respectively, and relied heavily on vertical scrolling.  

3.2.3. Navigation Techniques 

Six of the participants used physical navigation       
frequently during the tasks, i.e., they rotated their head         
and/or body back and forth to “access” all parts of the           
LHRD visually. The others kept their gaze mostly        
focused on a subset of the displays.  

4. Experiment II 

The purpose of Experiment II was to observe        
sensemaking in a VR environment and investigate       
whether an increased field of view in VR via a SPD has            
an effect on VA tasks. 

4.1. Methods 

We used a HTC Vive with a SPD to show the virtual            
environment through Unity 3D. The VR environment       
consisted of a curved display surface, as seen in figure 5. 
 

 
Figure 5: Curved screen surface in the virtual environment         
showing the scatterplots. 
 

We duplicated several desktop windows into the virtual        
environment and displayed different web applications,      
including DynSpace, using the Awesomeium plugin for       
Unity 5. We also redirected mouse and keyboard events         
to enable interaction with the content of these windows.         
We displayed more than a single window to make sure          
that participants could not get lost in the virtual         
environment. The largest window was placed in front of         
the user and showed DynSpace with 64 scatter plots on          
the VR surface to perform the VA task. Participants used          
a computer mouse to interact with the DynSpace user         
interface which was placed on a table in front of the           
participants. We used a screen-capture software to record        
the participants’ interactions with the system and to        
collect the task data. 

4.1.1. Procedure 

Prior to the study, participants were instructed in the         
specifics of VR, SPD and VA systems and were asked to           
give informed consent. They were further asked to agree         
to screen capturing and audio recording while taking part         
in the study. Participants were verbally instructed on the         
procedure for the experiment and exposed to a short         
training session prior to the actual task. A researcher was          
always present to collect observations, provide      
instruction, and for technical support, if needed. 
Participants sat on a chair located in the middle of a lab            
environment, with a little table in front of them to use the            
computer mouse. The surrounding area was emptied so        
they could not touch or bump into anything while being          
immersed to the virtual world.  
After each condition, each participant completed a       
Slater-Usoh-Steed questionnaire to account for their      
perception of presence. This has been additional       
collected data compared to experiment I. 

4.1.2. Participants 

In total, 7 (new) subjects (5 female; mean age was 21.28           
± 2.05 years) participated. Subjects were students of the         
local university and recruited from a local subject pool.         
The participants were unaware of the purpose of the         
study. The experiment was approved by the ethics        
committee of the university. 
A pre-study survey indicated that the participants had        
little experience in VA tasks (3x “None”, 3x “less than a           
year”, 1x “1-3 years”) and have been uniformly familiar         
with VR Headsets (3x “Yes”, 4x “No”). 

4.2. Results 

For the results of experiment II, we use the notation P4-II           
to signify participant four from the second experiment. 



4.2.1. Completion Time 

No participant exceeded the 60 minute limit of the study.          
Completion time of each task varied from 5 to 20          
minutes in the No-SPD condition (M = 12.85, SD =          
6.12) and from 8 to 23 minutes (M = 14.28, SD = 5.40)             
in the SPD-condition (see figure 6). 
 

Figure 6: Boxplots showing the time needed to complete the          
subtasks in either the SPD or the no-SPD condition. 
 
A Shapiro-Wilk test showed a normal distribution for        
both the No-SPD and the SPD condition. Variance        
homogeneity between conditions exists. An ANOVA      
showed no significant results of the condition on the         
working time (F(1,6) = 3.614, p = 0.105, η2 = 0.018). 
Participant P7-II created by far the biggest number of         
groups (SPD: 15, No SPD: 17). The participant noted         
afterwards, that they wanted to solve the task as soon as           
possible. Since the participant only relied on the        
commonality of labels, they performed merely a pattern        
recognition task on the naming of the plots, rather than          
truly making sense of the data.  

 
Figure 7: Boxplots showing the number of clusters in each          
subtask in either the SPD or the no-SPD condition. 
 
In contrast, participant P3-II solved the task very        
carefully and even changed their grouping strategy in the         

second condition. They took about 20 minutes for        
grouping through “commonality in labels” (No SPD) and        
23 min. for grouping by similar visual appearance (SPD). 

4.2.2. Number of Clusters 

The number of groups (figure 7) created in each         
condition varied from 6 to 17 in the No-SPD condition          
(M = 9.42, SD = 3.69) and 6 to 15 in the SPD condition              
(M = 8.42, SD = 3.20). A Shapiro-Wilk test showed a           
normal distribution for the No-SPD condition and not for         
the SPD condition. Variance homogeneity between      
conditions exists. We performed a parametric test since it         
is adequate robust to possible violations of the normality         
assumption [35]. The ANOVA identifies a significant       
difference between conditions for the number of groups        
created (F(1,6) = 7.000, p = 0.0382, η2 = 0.024). 

4.2.3. Clustering Strategy 

Participants used two different strategies for grouping       
plots in experiment II. The first strategy was to group by           
a commonality in labels. The second one was to group by           
a similar visual appearance of the scatterplots shown,        
e.g., (broadly) increasing plots vs. plots with no visible         
trends. While we expected that participants would use the         
latter strategy more frequently, the first one was used         
more widely. We could not identify a considerable        
difference of the clustering strategy between the SPD and         
No-SPD conditions. 
 

 
Figure 8: Barcharts showing the strategy used for clustering in          
V4-SPACE and VR setups (for both experiments). 
 
However, we observed a shift in strategy, from an initial          
grouping by commonality in labels to a grouping by         
similar visual appearance (illustrated in figure 8). This        
shift seems to be because of the succeeding subtasks.         
After the first subtask, one participant (P3-II) mentioned        
that they expected the visual appearance of the        
scatterplots to be more important for making sense of the          
data, rather than just ordering them by a commonality in          
axis labels. Thus, this participant grouped the graphs in         
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the second condition according to the visual appearance        
of the scatterplots. 

4.2.4. Cluster Shapes 

We observed three different kinds of arrangements       
participants used to classify the data: horizontally and        
vertically arranged, roughly circular, or a mixed       
arrangement (see figure 9). This classification is similar        
to the arrangements observed in experiment I. 
 

 
Figure 9: Barcharts showing the shape of the clusters used for           
clustering in V4-SPACE and VR setup 
 
Interestingly, the arrangement of clusters seems to       
directly correspond to the used clustering strategy. When        
grouping by commonality in labels, the arrangement of        
the clusters was horizontal or vertical. The strategy to use          
similar visual appearances changed the arrangement of       
the cluster shapes to a more “prototypical” arrangement        
of clusters with roughly circular shapes. Participant       
(P3-II) even commented that this seemed to be „more         
intuitive“. This indicates that the arrangement of clusters        
may be directly related to the clustering strategy. 
 

 
Figure 10: Preferences of the participants regarding the SPD         
headset. 

4.2.5. Advantages and Disadvantages of Sparse     
Peripheral Displays 

Asking the Participants what HMD condition they       
preferred, the outcomes reveal the same equal level of         
preference for “No SPD preferred”, “No difference       
experienced” or “SPD preferred” (see figure 10). One        
participant (P1-II) noted that they did not notice the SPD          
change between the tasks. 
Those participants who did not like the SPD condition         
mentioned that they perceived the SPD display to be too          
bright and thus as distracting while solving the VA task.          
One participant (P7-II) felt that the SPD impaired        
perception and that it actually “took away” from the         
experience. The same participant mentioned that the SPD        
was “some sort of separately perceived reality” to them.  
When asked about the SPD experience without a focus         
on solving a VA task, the SPD was preferred by a           
majority of participants, potentially due to the perception        
of less or no motion sickness. This result is contrary to           
the results of [28], where they observed an increase in          
motion sickness in using a SPD. Further, one participant         
(P3-II) mentioned that the SPD gave him a better sense          
of orientation. This helped him to navigate better        
between the content in the second subtask (the        
highlighting of the dimensions). 

4.2.6. Presence Questionnaire 

The overall Slater-Usoh-Steed (SUS) score for each       
subject was quite high, resulting in a high prevalence of          
participants being present in a virtual environment in        
general (figure 11). An ANOVA identified no significant        
results of the condition on the SUS score (F(1,12) =          
0.025, p = 0.878, η2 = 0.0021). Thus, our data          
disconfirm hypothesis H3-II. 

 
Figure 11: Results of the Slater-Usoh-Steed questionnaire for        
each participant and each HMD condition. 
 
Only a single participant (P7-II) gave the SPD condition         
a conspicuously higher SUS score than the no-SPD        
condition. The participant is the same who identified the         
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SPD to be some sort of separately perceived reality (see          
section 4.2.5). Interestingly, the same participant also       
mentioned the SPD to be less preferable than the         
No-SPD condition, which contradicts their SUS rating. 
P3-II identified the SPD condition as more preferable        
and that it gave them a broader sense of orientation          
during the task. Looking at the participants’ SUS scores,         
there was no significant difference between the       
conditions though. Overall, the SUS scores of P3-II were         
notably lower than any other participants’ scores. 

4.2.7. Highlighting of Dimensions 

The highlighting of the dimensions was a solely        
qualitative task. For those participants who grouped the        
plots by a commonality in labels, any highlighting of the          
dimensions directly matched the arranged groups. It is        
interesting to see that even though the participants did         
not know the requirements of the second subtask at the          
beginning, they arranged the groups by the dimensions in         
the first subtask. This was helpful for the (future) second          
subtask. Yet, no participant discovered and mentioned       
this. Most of the participants did not identify any reasons          
as to why some dimensions matched their groupings and         
why some did not. 
Not surprisingly, the participants who grouped according       
to similar visual appearance tried to make sense of their          
arrangement far more often than the participants who        
grouped by the commonality in labels. Their groups were         
arranged more likely by different dimensions and       
matched the highlighting less well. Participant (P5-II)       
mentioned it might have been better for the second         
subtask to arrange the graphs by the commonality in         
labels as opposed to arranging the clusters in a roughly          
circular manner. Using the think-aloud protocol, most       
participants who grouped by similar visual appearance       
mentioned the potential utility of cross references       
between the arranged groups according to the       
dimensions. Participant (P6-II) arranged the graphs by       
commonality in labels. However, faced with the second        
subtask, the participant tried to explain the dimensional        
matching only based on the scatterplot appearance and        
did not rely on the labels. However, the participant was          
still not able to come up with a reason as to why some             
plots where in different groups in their arrangement. 
Overall, most of the participants found the second        
subtask of making sense of the data and highlighting the          
dimensions challenging. One potential explanation is the       
relative lack of experience with VA in our participants. 

5. Discussion 

We can confirm Hypothesis H1-I, that users spatialize        
their content through clustering information and exploit       
the advantages of a large display space, through the         

observations of the users’ clustering behaviour in       
experiment I. Instead of treating the plots as a single          
group of data, they classified the plots through various         
strategies and used the full display space during        
sensemaking to create different clusters of data plots.  
Our second experiment, does not support any of the         
hypotheses H1-II, H2-II or H3-II, as we did not find any           
significant results that users perform differently in a SPD         
HMD compared to a common VR Headset. 
Combining the quantitative results for completion time       
and number of clusters with the qualitative data of         
clustering strategy and cluster shapes, we are unable to         
discern a clear picture if users perform differently in a          
SPD HMD relative to an off-the-shelf VR HMD. Thus,         
our hypothesis H1-II is not supported. 
We see no support for hypothesis H2-II, since we are          
unable to reach a clear conclusion on whether the SPD          
condition was preferred by the users while solving a VA          
task. The (low-resolution) larger field-of-view did not       
seem to have had a strong effect on the outcome. Finally,           
we observed no difference on the Slater-Usoh-Steed       
questionnaire, resulting in an unmet hypothesis H3-II. 
Using a between-subjects design we compared the results        
of experiment I and experiment II to investigate        
differences in sensemaking between the LHRD system       
and the VR HMD with and without the SPD. As seen in            
figure 8, 12 and 9, there are several differences between          
the results of experiment I and experiment II. 

 
Figure 12: Number of clusters generated in V4-SPACE and the          
VR setups. 
 
As we did not record the completion time in the first           
Experiment, we were not able to compare times between         
the experiments. We thus analyzed quantitative data in        
terms of the number of created clusters to compare both          
experiments. A Shapiro-Wilk test showed a normal       
distribution for the No-SPD condition, but not for the         
SPD and the LHRD. Variance homogeneity between the        
three exists. Since parametric tests are robust to the         
violation of the normality assumption [35], we performed        
an ANOVA over V4-SPACE and HMD results       
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(V4-Space: M = 7.0, SD = 3.5; No-SPD condition: M =           
9.42, SD = 3.69; SPD condition: M = 8.42, SD = 3.20).            
The results showed no significant difference between the        
number of created cluster in V4-Space and the no-SPD         
HMD (F(1,12) = 1.257, p = 0.284, η2 = 0.095) and the            
V4-SPACE and the SPD HMD (F(1,12) = 0.449, p =          
0.515 η2 = 0.036).  
Thus, we may disconfirm hypothesis H1-C and can only         
state that users do not seem to perform differently in an           
HMD relative to a LHRD. Users did not perform better          
in a LHRD relative to a VR HMD according to our           
investigations. 
 
Clustering Strategy 
In terms of the clustering strategy, in the second         
experiment a subset of users relied on grouping based on          
the commonality of labels. Yet, as the participants        
progressed through the experiment, we observed a       
transition towards a strategy based on similar visual        
appearance of scatterplots in some participants. This       
could be considered to be a more reflective way of          
grouping the plots. We hypothesize that grouping by        
similar visual appearance corresponds to a higher-level       
sensemaking activity, since it involves more active       
reflection about the data. In the first experiment, we         
observed an additional, third strategy. While about a        
third of the participants based their strategy on the visual          
appearance of the scatterplots and another third based it         
on the commonality of axis labels, the remaining third         
adopted a clustering approach based on common topics        
of plots. This strategy is more complex and reveals that          
some were actively trying to make sense of the data.  
Using this strategy, participants neither clustered      
according to a pattern recognition/visual matching      
strategy, regardless of what the data presents; instead,        
they aimed to bring charts together based on what the          
data might be about. Even if the axis labels were          
different, users thought about the concepts and what        
those concepts are about and clustered the plots so that          
each went into a corresponding category of topics.  
 
Cluster Shape 
We also compared the shape of the clusters the         
participants generated. In the first experiment the       
participants’ rearrangement efforts resulted mostly in      
simple shapes, either highly rectangular (aspect ratio       
substantially different from 1) or roughly circular (aspect        
ratio around 1). Classifying cluster shapes by aspect ratio         
(large ratio: horizontal; small: vertical) yields the       
following grouping (with examples shown in figure 13): 
·        Horizontal: 1 participant. 
·        Vertical: 3 participants. 
·        Roughly circular: 5 participants. 

For several participants, no clear pattern of cluster        
arrangement could be identified. P0-I and P1-I did not         
have any space between clusters arranged in a random         
order. For P4-I and P5-I, clusters were separated by some          
distance. However, the spacing seemed uniform and       
clusters appeared similar. In contrast, other participants       
used cluster position to convey meaning. As an example,         
P3-I used the cluster shape to indicate what the clusters          
represented. While P3-I categorized groups looked      
somewhat similar, their group of uncategorized plots       
looked different from other clusters in terms of shape and          
the distance from other clusters. 
We observed similarities in cluster shapes in experiment        
II as well. Participants’ cluster shapes were defined        
similarly to the first experiment (horizontal or vertical,        
roughly circular, mixed arrangement). As in experiment       
I, horizontal or vertical arrangement was used by        
participants that did not seem to think deeply about their          
clustering strategy.  
When users appeared to make more sense of the data,          
they started to create more traditional “roughly circular”        
clusters and used shape and space as a tool for          
sensemaking within the available workspace.  

 
Figure 13: Variation in aspect ratios used by participants. P6-I          
used a roughly circular arrangement (aspect ratio ~1, top left)          
while P4-I used a vertically-oriented layout (aspect ratio <<1,         
top right) and P5-I a more horizontal organization (aspect ratio          
>> 1, bottom). 

5.1. Summary 

We conducted two sensemaking studies in immersive       
environments, one on a large high-resolution display       
(LHRD) called V4-SPACE and one using a HMD-based        
VR system with a sparse peripheral display option that         
we turned on and off. Using equivalent tasks, we         
observed users’ behaviors in those environments and       
compared the outcomes within the same environment and        
the two separate display environments to each other.  
The first exploratory study aimed to identify challenges        
and yielded qualitative observations for VA tasks in a         
LHRD environment. We obtained new empirical      
information about participants’ approaches when asked      
to prepare a large volume of data for analytical tasks on           
large displays. Even though all participants started with        



the same state, the results of experiment I suggest that          
different participants follow varying classification and      
spatial organization strategies. We observed clear      
distinctions in terms of clustering strategies, space usage,        
and preferred navigation techniques. 
In the second experiment, we investigated the utility of a          
sparse peripheral display condition on a VR HMD. The         
presence of the SPD yielded mixed responses. While        
some users found it ‘too bright’, ‘distractive’ or thought         
that it reduces the immersion; others thought it causes         
less or no motion sickness or that it supported a better           
sense of orientation. Quantitative analysis yielded a       
significant larger number of clusters created in the SPD         
than in a common VR HMD. 
The comparison of both experiments showed no       
significant difference of the performed quantitative data       
in V4-SPACE and the VR SPD HMD. A comparison of          
the qualitative data yielded an additional strategy used in         
V4-SPACE and a slightly varying distribution of cluster        
shapes. The results show initial tendency that users        
perform different in both immersive environments,      
leaving the possibility for future research. 

5.2. Limitations 

A limitation we have to consider is the small sample size           
of n = 9 in experiment I and n = 7 of experiment II.              
While this limits the strengths of the insights we can          
derive, we point out that the effort to run the studies was            
high (and the SPD broke during the second experiment         
for the eight participant). 
Further, our participants were university students with       
limited VA experience. We observed that some       
participants in experiment II could not tell what was         
happening when highlighting dimension. We believe the       
lack of VA experience might have impacted how much         
sense the participants were able to extract from the data.  
We tried to carefully match experimental conditions for        
both environments through using the same input device,        
apparent size of the workspace, amount of information        
displayed and the tasks that participants had to perform.         
Yet, there were also technological limits to this, such as          
the maximum resolution of the available VR headset        
system being far inferior to what is available on a LHRD.  
Since the participants could terminate the task whenever        
they wanted, the duration to solve the task mostly         
depended on their motivation and their clustering and        
sensemaking strategies for the data. Further, since there        
was no single correct solution for the task, each         
participant used a different classification strategy with       
their own criteria. This limitation introduces noise into        
the main goal of comparing sensemaking in HMD and         
LHRD technologies and makes it more difficult to draw         
strong conclusions. In future work, it would be        

interesting to repeat the experiment on a conventional        
computer environment as a reference baseline. 
A limitation for the second experiment in specific is         
using a computer mouse as an input device for the VR           
HMD. Yet, as mentioned above, we found that a VR          
controller was not sufficiently accurate to enable       
participants to interact with the details of the charts.         
Since a mouse is not a typical HMD input device, it           
might make its interaction with the system unnatural.        
While participants could not see the physical mouse they         
were using while being immersed in the HMD, none of          
the participants reported any issues with this.  
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